NBA防守指標の盲点

データは嘘をつかない—でもチームは無視する
PythonとSynergy Sportsのデータベースで2000試合以上の予測モデルを構築。しかし毎シーズン、リムプロテクション率、クローアウト効率、トランジションディフェンス頻度の3つの重要な指標が無視される。これらは目立たない統計ではなく、静かな殺し手だ。
「目視評価」神話
コーチたちは「見てわかる」と言うが、圧力下では人間の知覚は失敗する。選手がバスケット近くにいる=「熱い」ように見えても、クローアウトが0.3秒遅れればそれは直感ではなくデータだ。私たちは直感ではなく、本質を測定している。
状況維持の理由
才能や努力ではない。慣性だ。組織は古びたスカウティングフレームワークにしが着し、定量的なエッジケースを無視する。同じコーチたち?彼らは間違っていない。ただ統計的盲目なのだ。
無視する真の代償
トランジションディフェンス(1ポゼッションあたりの秒数で測定)を無視すると、平均で12%以上多くの得点を失う。これは逸話ではなく、14シーズン分の78%精度モデルによる回帰分析だ。
数字なしで「影響」を感じることはできない。
BeantownStats
人気コメント (3)

Các huấn luyện viên vẫn nói “tôi biết khi tôi thấy nó” — nhưng mắt họ bị đục như màn hình điện thoại! Trong khi dữ liệu cho thấy cầu thủ đóng cắt trong 0.3 giây là vũ khí chết, thì họ lại đang… chơi cảm với cái nón của ông già? Đừng tin vào cảm giác — đây là dữ liệu chứ không phải trực giác! Bạn còn đánh giá phòng ngự bằng mắt? Thì bạn đang bỏ lỡ chiến thắng trên bàn! Có ai muốn mua vé số không? Hãy click vào link này đi!

They still trust their eyes over models? Bro. I’ve trained on 2000 games — and my algorithm knows when you miss a closeout by 0.3s. That’s not intuition; that’s just bad data wearing cowboy boots.
Rim protection isn’t flashy—it’s the silent killer no one audits. Meanwhile, Coach Dave’s still saying ‘I know it when I see it’… but he hasn’t seen stats since 2012.
So… you believe your gut more than Gaussian priors? Vote below: Human Expert or AI? (Spoiler: The AI won. Again.)

Quem pensa que defesa é só “olhar e sentir”? Meu modelo diz que quando um jogador fica longe da cesta em 0.3 segundos, ele não está “vendo” — ele está sendo estatisticamente enganado! Os treinadores ainda usam o olfato do século XX enquanto os dados riem na sala. Se você não usa métricas reais… então seu time perde 12% mais pontos e você ainda joga com o café da manhã. O que o seu time favorito está escondendo? Um gráfico ou uma carcaça de vinho?
- パシフィックスの新星、マシューリンがパーフェクトゲームデータ分析に基づいたNBA Summer Leagueレポート。インディアナ・ペイサーズの新人ベネディクト・マシューリン(全体44位指名)が15分間で6投6中(3P1本含む)13得点、4リバウンド、4スティールを記録。この活躍から彼のローテーション即戦力としての可能性を探ります。
- サンダーの勝利:データが示す優勝への課題スポーツデータアナリストが、サンダー対ペイサーズ戦を分析。ターンオーバーや得点効率などの鍵となる統計データから、サンダーの優勝候補としての実力を検証します。勝利の裏側に潜む問題点を解説。
- シンプルな守備が勝利を導くデータ分析から明らかになったオクラホマシティ・サンダーの切り替え守備戦術。ゲーム4-5で彼らが如何にしてインディアナ・ペイサーズの攻撃を封じ込めたかを解説。シャイとジェイレンの1対1の強さが勝敗を分けました。プレーオフにおけるシンプルな戦略の効果を検証します。
- タイリーズ・ハリバートン:スマートなプレーがペイサーズの未来を決めるデータ分析に基づき、タイリーズ・ハリバートンの冷静さがいかに重要かを解説。ペイサーズの将来は、彼のコントロールされた攻撃性にかかっています。若きスターがリスクを避け、戦略的に成長することで、チームは東部の強豪へと成長できるでしょう。
- ウォリアーズはペイサーズの攻撃スタイルを採用すべきか?データ分析NBAファイナルが進む中、ゴールデンステート・ウォリアーズとインディアナ・ペイサーズの攻撃スタイルの類似点に注目が集まっています。両チームのボールムーブメントと選手の動きを重視した速攻型オフェンスをデータ分析し、ウォリアーズがペイサーズのモデルを取り入れるべきか検証します。