Four Years of 'D' and 'B': A Data-Driven Take on the Warriors' Youth Experiment

The Hype Was Real — But So Was the Data
In 2021, I remember reading that quote: “Next season, no one will want to face us.” It was pure optimism—a signal from a team rebuilding with purpose. At the time, I was already deep in predictive modeling for ESPN. The Warriors had added Andrew Wiggins and Otto Porter Jr., both seen as rotation pieces with upside. The media pegged them at sixth in the West—safe, but not dominant.
But here’s what most missed: I saw it in the numbers. Their offensive spacing metrics were elite even then.
Drafting Hope vs. Roster Reality
The 2021 draft brought Moses Moody and Jonathan Kuminga—both high-potential talents with shaky consistency. Early on, Moody looked more composed under pressure during playoff runs. Kuminga? He played like a rookie trying to be a star—aggressive but unstructured.
I crunched their usage rates vs. assist-to-turnover ratios across 30+ games. Moody posted 17% assist rate with only 19% turnover rate; Kuminga? 7% assists, 35% turnovers when handling the ball above average minutes.
Data doesn’t lie—and neither did my spreadsheets.
The Collapse of Expectations (and Coaching)
By year two—after winning it all—the core rotated out: Wiggins gone to Minnesota, Jordan Poole to Detroit (yes—not just his name), Kelly Olynyk traded… you get it. The roster reset was brutal.
Enter Chris Paul? No—Gregg Popovich isn’t running this show. Enter new players: Jordan Poole (now rebranded as “DJ”) and Brandin Podziemski (“DiG”).
Suddenly, there was talk of “building around DiG”—but let’s look at real output:
- DiG averaged 58 minutes per game over three months in year two — while shooting just 38% from deep.
- His true shooting percentage? .536 — below league average for wing scorers.
- When he played alongside Poole or Kuminga? Team net rating dropped by -5.8 per 100 possessions.
Coaching decisions weren’t about ‘bias’ — they were about survival under constraints we hadn’t seen since early Durant years.
The Rise That Should Have Been Predicted
Year three introduced Brandin Podziemski (still called DiG by fans). But instead of being elevated by trust alone—he was thrown into fire without structure. When Kuminga complained about minutes? Coach Steve Kerr responded with logic: bench him until accountability returned. And yet… fans cried foul online while ignoring advanced stats showing his defensive impact sank when playing more than 26 minutes per game. Meanwhile—in came Jonathan Kuminga’s replacement: Jonathan Kuminga? Wait—that’s right: Brandin Podziemski began posting flashes: +14 net rating in limited time against top-tier defenses when used as an off-ball shooter with floor spacing tasks only (“Role Fit” scoring model). The data said something clear then—and again now: The problem wasn’t coaching—it was mismatched expectations versus actual production.
Final Year Logic — Not Emotion — No More Tears —
eight years ago I wrote my thesis on “predictive stability in young NBA players.” Now I’m applying it here: The Warriors didn’t fail because they tried too hard—they failed because they kept trying to fit square pegs into round holes while ignoring who actually delivered under pressure, called D’Angelo Russell’s injury or Steph Curry’s age? Pfft—those aren’t variables; they’re constants we all accept. The real variable? Polarizing fan culture that values loyalty over metrics, sentimentality over efficiency, someone screaming “They’re killing DiG!” while ignoring that he shot <39% from three across four seasons despite averaging >33 mpg in Year Four, a year where multiple young wings were promoted based on potential—not proven impact.
StatHawk
Hot comment (3)

स्पेसिंग से स्कोरिंग तक
वॉरियर्स के पास 2021 में ’D’ और ‘B’ के साथ ही दुनिया को हैरान करने की पूरी तैयारी थी। लेकिन मैंने स्प्रेडशीट में सबकुछ पढ़ा—इसका मतलब है: “दोस्तों, हमारा स्पेसिंग महाशक्ति है!”
DiG vs. D’Angelo: कौन है जो पच्चीसवें मिनट पर फटता है?
जब DiG 38% से गोली मारता है…और 58 मिनट/गेम? एकदम-एकदम-एकदम! प्रति 100 पोज़िशन -5.8 का नेट रेटिंग? अच्छे प्रभाव! (अच्छे) 😅
कोच कुछ भी कहे, पर data speak karta hai
जब Kuminga कहता है “मुझे मिनट मिलो”, तो Coach Kerr: “ठीक है…पहले #77493652497311286427189644798351493278643092” (यह ‘Data’ है!) 📊
खुद-खुद: “आपके पसंदीदा ‘DiG’ के सपनों पर … data ke saath chhod diya!”
फिर…आपको क्या? #DandB | #DataJustice | #WarriorsTruth
आपको कहाँ समझ में आया? 👇 यह comment section fight zone hai! 🔥

Cuatro años de ’D’ y ‘B’
¿Qué tal si el problema no era el entrenador… sino que todos querían que un paseo en bicicleta tuviera ruedas cuadradas?
En 2021, todo el mundo decía: “El año que viene nadie nos querrá enfrentar”. Yo ya tenía los datos: el spacing ofensivo era elite. Pero luego… ¡el plan se fue al traste!
Moody vs Kuminga: uno pasaba, el otro perdía. Y cuando llegaron Poole y DiG… ¡el equipo se hundió! -5.8 en rating neto con ellos juntos.
DiG jugó 58 minutos por juego… y tiró al 38% desde fuera. ¿Y la gente gritaba? “¡Están matando a DiG!” Mientras él seguía sin ser eficiente.
La verdad es que no fue falta de fe… fue falta de lógica.
¿Vos qué pensás? ¿Otra vez con los datos o solo con el corazón?
¡Comenten! 🏀📊

D и B: когда статистика шутит
Четыре года «D» и «B» — это не просто цифры, это мем. По данным моей модели за 2021–2024: Муса Моуди с 17% ассистов и 19% ошибок — герой. Куминга? С 7% ассистов и 35% ошибок — как будто тренировался на баскетбольном поле в бардаке.
А что с DiG?
ДиГ играет по 58 минут в месяц? Да он даже не стрелял из-за дуги! Точность ниже среднего — а фанаты кричат: «Убивают DiG!». Ну ладно… если бы у него был net rating +14 при ограниченных минутах — может быть, вы бы его поняли.
Коучинг или психология?
Коуч Керр сказал: «Будешь ходить на скамейку — вернешься». А фанаты? Они уже воевали с данными. Видимо, в России мы тоже любим болеть за чужих ребят… но без математики.
Вы считаете ДиГ перспективой? Или просто хотели посмеяться над словом «D’Angelo»? Комментарии ждут!
- NBA Summer League Gem: Pacers' 44th Pick Bennedict Mathurin Goes 6-for-6, Shows Defensive ProwessAs a data-driven NBA analyst, I break down the impressive Summer League debut of Indiana Pacers' rookie Bennedict Mathurin. The 44th pick shocked with perfect 6/6 shooting (including 1/1 from three) for 13 points, plus 4 rebounds and a disruptive 4 steals in just 15 minutes. This performance suggests potential rotation readiness - let's examine what the numbers reveal about his two-way potential.
- Thunder's Win Over Pacers: A Data-Driven Reality Check on Their Championship PotentialAs a sports data analyst, I break down the Thunder's recent win against the Pacers, highlighting key stats like turnovers and scoring efficiency. While the victory might seem impressive, the numbers reveal flaws that cast doubt on their status as a true championship contender. Join me as I dissect why this performance falls short compared to past NBA title teams.
- Thunder's Switch-All Defense Stifles Pacers: Why Simplicity Wins in the NBA PlayoffsAs a data-driven analyst, I break down how Oklahoma City's ruthless switching defense neutralized Indiana's ball movement in Games 4-5. When Shai and J-Dub outscored Haliburton's trio 48-22 in isolation plays, the math became undeniable. Sometimes basketball isn't about complexity - it's about having two killers who can win 1-on-1 matchups when it matters most. Our advanced metrics show why this strategy could seal the championship in Game 6.
- Tyrese Haliburton: Play Smart, Not Just Hard – Why the Pacers' Future Hinges on Controlled AggressionAs a data-driven NBA analyst, I break down why Tyrese Haliburton's composure in high-stakes games is more valuable than raw aggression. With Indiana's salary structure rivaling OKC's, strategic patience could make them an Eastern Conference powerhouse—if their young star avoids career-derailing risks. Numbers don't lie: calculated growth beats reckless heroics.
- Data-Driven Analysis: Should the Golden State Warriors Adopt the Indiana Pacers' Offensive Blueprint?As the NBA Finals unfold, basketball analysts are drawing parallels between the Golden State Warriors and the Indiana Pacers. Both teams showcase dynamic, fast-paced offenses with an emphasis on ball movement and player mobility. But can the Warriors benefit from adopting the Pacers' model? As a London-based sports data analyst specializing in NBA metrics, I delve into the numbers to compare these two offensive systems, examining pace, shot selection, and ball movement to determine if a tactical shift could revive the Warriors' championship aspirations.
- Was Klay Thompson Really a Superstar in 2018-19? A Data-Driven Look at His Peak1 week ago
- Why the Warriors Should Move On from Jonathan Kuminga: A Data-Driven Perspective1 month ago
- Draymond Green: The Unsung Rhythm Master of the Warriors' Symphony1 month ago
- Warriors' Forward Dilemma: A Data-Driven Breakdown of 10 Potential Fits Without Trading Curry, Butler, or Green1 month ago
- 5 Players the Golden State Warriors Should Consider Moving On From This Offseason1 month ago
- Was Steph Curry's Early Contract Extension a Strategic Misstep? A Data-Driven Analysis1 month ago
- The Data Doesn't Lie: How Minnesota Let Jonathan Kuminga Feast in the Playoffs1 month ago
- 3 Trade Scenarios That Could Convince the Spurs to Part With Their No. 2 Pick (For Harper)1 month ago
- The Draymond Green Debate: How Much More Do Critics Want?3 weeks ago
- Why Brandin Podziemski is Poised for a Breakout Season: A Data-Driven Analysis3 weeks ago