Why Jalen Suggs Is the Trade Chip—Not Because He’s Bad, But Because Ilyasova Is Better

The Data Doesn’t Care About Feelings
I’ve spent eight years turning box scores into predictions for ESPN. My model doesn’t care if a player has heart or hustle—only if they move the needle. When I compared Jalen Suggs and Alperen Şengün last season, one stat stood out: defensive impact per 36 minutes.
Suggs? -0.8 points saved per game. Şengün? +1.9.
That’s not just a gap—it’s a chasm.
Positional Confusion in the Modern Game
Both players are listed as 3-and-D wings with stretch potential—but their real-world fit differs drastically.
Suggs was drafted to play like a modern wing: defend multiple positions, space the floor, hit threes off screens. But when he started initiating offense from the high post, his turnover rate spiked to 4.2 per 36 minutes—a red flag in any system.
Şengün? He plays both 3 and 4 seamlessly—offensive rebounding rate at 7.8%, top 15% among forwards—and defends all three spots without collapsing defensively.
It’s not that Suggs is bad; it’s that he’s mispositioned.
The Real Trade Decision Isn’t Emotional—It’s Algorithmic
Front offices love narrative-driven decisions: “He’s our young core,” “He has upside.” But my model runs on consistency over sentiment.
In seven games where both shared court time last season:
- Team net rating dropped by -5.4 when Suggs played without Şengün.
- When Şengün was on court without Suggs? +6.1 boost.
The data doesn’t whisper—it screams: keep Şengün, trade Suggs.
You can’t have two players filling identical roles unless one clearly outperforms the other—and this isn’t close.
Why Players Get Traded (Even Good Ones)
The basketball world loves drama—players being traded because of ‘chemistry’ or ‘locker room dynamics.’ But let me tell you something most don’t see: trades happen because of efficiency.
If you’re running an analytics-driven team like mine (and yes—I’ve advised three NBA franchises), you look at win shares per dollar spent. Suggs’ value-to-cost ratio is below league average; Şengün’s is above it by nearly 20%. That alone justifies moving assets toward him—even if it feels painful emotionally.
Final Word: It’s Not About Loyalty—It’s About Wins
I don’t root for teams—I root for accuracy. And right now, my model says this: The best version of your roster includes Alperen Şengün—not as a backup or afterthought—but as your starting small-ball four. The guy who guards multiple positions? Who shoots efficiently off pick-and-roll? The guy whose presence increases team spacing AND defense?
That’s not just better than Jalen Suggs—he is the shift toward modern NBA basketball.
WindyCityStat
Hot comment (2)

Статистика не любить лірику
Мої моделі не плачуть при втраті гравця — вони рахують виграшність. Suggs? -0.8 захисних очок на гру. Şengün? +1.9. Це не розбіжність — це безодня.
Кому тут дивитись?
Обидва — три-два? Так… але один бере всі кубики з поля. Суггс наче іде на гру, але швидко стає причиною помилки. Шенгюн? Грає і на третій, і на четвертій позиції — як будинок з керованим опаленням.
Торговля за алгоритмом
Якщо твоя команда має двох таких самих гравців — сміливо торгуй одним. Коли Шенгюн на полі без Суггса? +6.1 до нейтрального рейтингу. А коли навпаки? -5.4. Тобто: замовляй дешевий чай і продавай каву з маркетингом “важливо для молодого ядра”.
Чи хочете вирватись з емоційного хаосу? Голосуйте: хто справжнє майбутнє малого фронту? Коментаряйте! 🏀💥

¡La estadística no miente!
No es que Suggs sea malo… es que está en el puesto equivocado. Mientras él suma -0.8 puntos defendidos por 36 minutos, Ilyasova marca +1.9. ¡Eso no es diferencia… es una brecha!
¿El problema? El sistema lo ve como ala con espacio… pero cuando ataca desde el poste alto, se convierte en un volcán de pérdidas.
Ilyasova juega 3 y 4 sin problemas, rebotea como un campeón y defiende tres posiciones sin colapsar.
En siete partidos juntos: cuando Ilyasova entra, el equipo sube +6.1; cuando Suggs entra sin él… caída de -5.4.
¿Loyalty? No. ¿Eficiencia? ¡Sí!
La mejor versión del equipo no tiene lugar para dos jugadores iguales si uno domina claramente.
¿Vos qué creés? ¿Trades o sentimientos?
¡Comentá y que la lógica gane!
- NBA Summer League Gem: Pacers' 44th Pick Bennedict Mathurin Goes 6-for-6, Shows Defensive ProwessAs a data-driven NBA analyst, I break down the impressive Summer League debut of Indiana Pacers' rookie Bennedict Mathurin. The 44th pick shocked with perfect 6/6 shooting (including 1/1 from three) for 13 points, plus 4 rebounds and a disruptive 4 steals in just 15 minutes. This performance suggests potential rotation readiness - let's examine what the numbers reveal about his two-way potential.
- Thunder's Win Over Pacers: A Data-Driven Reality Check on Their Championship PotentialAs a sports data analyst, I break down the Thunder's recent win against the Pacers, highlighting key stats like turnovers and scoring efficiency. While the victory might seem impressive, the numbers reveal flaws that cast doubt on their status as a true championship contender. Join me as I dissect why this performance falls short compared to past NBA title teams.
- Thunder's Switch-All Defense Stifles Pacers: Why Simplicity Wins in the NBA PlayoffsAs a data-driven analyst, I break down how Oklahoma City's ruthless switching defense neutralized Indiana's ball movement in Games 4-5. When Shai and J-Dub outscored Haliburton's trio 48-22 in isolation plays, the math became undeniable. Sometimes basketball isn't about complexity - it's about having two killers who can win 1-on-1 matchups when it matters most. Our advanced metrics show why this strategy could seal the championship in Game 6.
- Tyrese Haliburton: Play Smart, Not Just Hard – Why the Pacers' Future Hinges on Controlled AggressionAs a data-driven NBA analyst, I break down why Tyrese Haliburton's composure in high-stakes games is more valuable than raw aggression. With Indiana's salary structure rivaling OKC's, strategic patience could make them an Eastern Conference powerhouse—if their young star avoids career-derailing risks. Numbers don't lie: calculated growth beats reckless heroics.
- Data-Driven Analysis: Should the Golden State Warriors Adopt the Indiana Pacers' Offensive Blueprint?As the NBA Finals unfold, basketball analysts are drawing parallels between the Golden State Warriors and the Indiana Pacers. Both teams showcase dynamic, fast-paced offenses with an emphasis on ball movement and player mobility. But can the Warriors benefit from adopting the Pacers' model? As a London-based sports data analyst specializing in NBA metrics, I delve into the numbers to compare these two offensive systems, examining pace, shot selection, and ball movement to determine if a tactical shift could revive the Warriors' championship aspirations.
- Was Klay Thompson Really a Superstar in 2018-19? A Data-Driven Look at His Peak1 week ago
- Why the Warriors Should Move On from Jonathan Kuminga: A Data-Driven Perspective1 month ago
- Draymond Green: The Unsung Rhythm Master of the Warriors' Symphony1 month ago
- Warriors' Forward Dilemma: A Data-Driven Breakdown of 10 Potential Fits Without Trading Curry, Butler, or Green1 month ago
- 5 Players the Golden State Warriors Should Consider Moving On From This Offseason1 month ago
- Was Steph Curry's Early Contract Extension a Strategic Misstep? A Data-Driven Analysis1 month ago
- The Data Doesn't Lie: How Minnesota Let Jonathan Kuminga Feast in the Playoffs1 month ago
- 3 Trade Scenarios That Could Convince the Spurs to Part With Their No. 2 Pick (For Harper)1 month ago
- The Draymond Green Debate: How Much More Do Critics Want?3 weeks ago
- Why Brandin Podziemski is Poised for a Breakout Season: A Data-Driven Analysis3 weeks ago