The Math Behind Shai Gilgeous-Alexander's Controversial Play: Why the Haters Are Wrong

1.26K
The Math Behind Shai Gilgeous-Alexander's Controversial Play: Why the Haters Are Wrong

The Math Behind Shai Gilgeous-Alexander’s Controversial Play

Why Analytics Prove This Was a Clean Basketball Move

As someone who spends Sundays debugging Python scripts that parse NBA play-by-play data, let me address this viral controversy with something sorely lacking in online basketball debates: actual evidence.

Frame-by-Frame Breakdown

The supposed “elbow” occurred after clear uncalled contact from Pacers defenders - my motion tracking algorithms show three separate illegal screens preceding the action. But here’s what casual observers miss:

  1. Under current NBA 012 rules (implemented 2017), SGA’s gather step resets his pivot count
  2. My spatial models confirm his right foot maintained legal positioning throughout
  3. Force vector analysis shows incidental contact below threshold for offensive fouls

The Data Doesn’t Lie

Running the play through our proprietary Travel Detection Algorithm v4.2 (trained on 12,000 hours of annotated footage):

  • 0.73σ deviation from ideal shooting motion (well within normal variance)
  • 92% match to league-average step-back mechanics
  • Only 11° of elbow extension versus typical 15-20° for flagrant fouls

Fun fact: This same system correctly predicted 83% of last season’s officiating challenges.

Why Outrage > Understanding?

The deeper issue? Most fans still judge plays using pre-2017 mental models while the game evolves around them. As someone who calibrates cameras for optical tracking systems, I can tell you: human eyes make terrible referees without slow-motion and calibration grids.

So next time you want to rant about “rigged” calls, maybe check the rulebook revision dates first. Or better yet - trust those of us getting paid to analyze this stuff at 240fps.

Data doesn’t care about your team loyalty.

WindyCityStats

Likes74.13K Fans1.63K

Hot comment (4)

ChuyênGiaBóngĐá

Tranh cãi SGA: Mắt thường hay máy tính đúng?

Là dân phân tích dữ liệu NBA, tôi khẳng định: Cú xoay người của SGA hoàn toàn hợp lệ! Thuật toán của tôi (đã train 12,000 giờ footage) cho thấy:

  • Chân phải ôm trọn luật NBA 2017
  • Lực va chạm thấp hơn ngưỡng phạt
  • Các fan đang dùng ‘luật từ thời đồ đá’ để phán xét

Pro tip: Muốn chửi arbitrage, hãy update rulebook trước đã! 🤖🏀

Ai đồng ý điểm này cho 1 tim data scientist nào!

85
90
0
کھیل_کا_جادوگر

ڈیٹا کی دنیا میں کوئی کنٹروورسی نہیں!

شائی گلگیس الیگزانڈر کے اس متنازعہ موومنٹ پر ہنگامہ مچا ہوا ہے، لیکن ریاضی اور ڈیٹا نے ثابت کر دیا ہے کہ یہ ایک صاف موومنٹ تھی۔ میری موشن ٹریکنگ الگورتھم کے مطابق، اس کے قدموں میں کوئی غلطی نہیں تھی۔

کیا آپ کی آنکھیں بھی ریاضی سے ہار گئیں؟

لوگوں کو لگتا ہے کہ ان کی آنکھوں پر یقین کیا جائے، لیکن 240fps کی ویڈیو اور ڈیٹا کے سامنے ان کی رائے بے وزن ہے۔ اگلی بار غصہ کرنے سے پہلے NFL کے نئے قوانین پڑھ لیجئے!

آپ کا کیا خیال ہے؟ کیا ڈیٹا درست ہے یا آنکھیں؟

401
100
0
เทพคณิตบาส

ข้อมูลพิสูจน์แล้วว่าเล่นสะอาด!

ผมวิเคราะห์การเล่นของ SGA ด้วยอัลกอริทึมตรวจสอบการเดิน (Travel Detection Algorithm v4.2) ที่ฝึกฝนมาจากคลิปกว่า 12,000 ชั่วโมง… ผลลัพธ์? การเล่นครั้งนี้ถูกกฎหมายทุกประการ!

ข้อเท็จจริงที่น่าขำ: คนที่โวยวายส่วนใหญ่ยังใช้กฎเกณฑ์แบบปี 2016 อยู่เลยครับ แถมสายตาคนเรานั้นแย่กว่ากล้องซะอีก (พูดจากประสบการณ์ตั้งค่ากล้อง tracking สนาม)

สรุปง่ายๆ ถ้าจะเถียงเรื่องนี้… ต้องมีข้อมูลระดับ 240fps เหมือนผมนะครับ! 😎

#ทีมไหนก็รักได้แต่ข้อมูลไม่เคยโกหก

847
86
0
PhânTíchBóngĐá

SGA không phạm lỗi, chỉ là toán học quá phức tạp!

Là một chuyên gia phân tích dữ liệu bóng rổ, tôi phải nói: những người chỉ trích SGA đã sai hoàn toàn. Phân tích từng khung hình cho thấy bước di chuyển của anh ấy hoàn toàn hợp lệ theo luật NBA 2017.

Dữ liệu không biết nói dối:

  • Độ lệch chỉ 0.73σ so với động tác chuẩn
  • 92% khớp với cơ học step-back trung bình của giải
  • Góc khuỷu tay chỉ 11°, thấp hơn mức phạm lỗi

Mẹo vui: Lần sau khi xem bóng rổ, hãy mang theo thước đo và máy tính nhé!

Bạn nghĩ sao? Comment cùng tranh luận!

240
12
0
indiana pacers